

General Certificate of Education (A-level) June 2012

Physics A
PHYA1
(Specification 2450)
Unit 1: Particles, quantum phenomena and electricity

## Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

## Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

## Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre

Set and published by the Assessment and Qualifications Alliance.

## Instructions to Examiners

1 Give due credit for alternative treatments which are correct. Give marks for what is correct in accordance with the mark scheme; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors, specific instructions are given in the marking scheme.

Do not deduct marks for poor written communication. Refer the scripts to the Awards meeting if poor presentation forbids a proper assessment. In each paper, candidates are assessed on their quality of written communication (QWC) in designated questions (or part-questions) that require explanations or descriptions. The criteria for the award of marks on each such question are set out in the mark scheme in three bands in the following format. The descriptor for each band sets out the expected level of the quality of written communication of physics for each band. Such quality covers the scope (eg relevance, correctness), sequence and presentation of the answer. Amplification of the level of physics expected in a good answer is set out in the last row of the table. To arrive at the mark for a candidate, their work should first be assessed holistically (ie in terms of scope, sequence and presentation) to determine which band is appropriate then in terms of the degree to which the candidate's work meets the expected level for the band.

| QWC | descriptor | mark range |
| :---: | :---: | :---: |
| Good - Excellent | see specific mark scheme | $\mathbf{5 - 6}$ |
| Modest - Adequate | see specific mark scheme | $\mathbf{3 - 4}$ |
| Poor - Limited | see specific mark scheme | $\mathbf{1 - 2}$ |
| The description and/or explanation expected in a good answer should include a |  |  |
| coherent account of the following points: |  |  |
| see specific mark scheme |  |  |

Answers given as bullet points should be considered in the above terms. Such answers without an 'overview' paragraph in the answer would be unlikely to score in the top band.

3 An arithmetical error in an answer will cause the candidate to lose one mark and should be annotated AE if possible. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks.

4 The use of significant figures is tested once on each paper in a designated question or partquestion. The numerical answer on the designated question should be given to the same number of significant figures as there are in the data given in the question or to one more than this number. All other numerical answers should not be considered in terms of significant figures.

Numerical answers presented in non-standard form are undesirable but should not be penalised. Arithmetical errors by candidates resulting from use of non-standard form in a candidate's working should be penalised as in point 3 above. Incorrect numerical prefixes and the use of a given diameter in a geometrical formula as the radius should be treated as arithmetical errors.
$6 \quad$ Knowledge of units is tested on designated questions or parts of questions in each a paper. On each such question or part-question, unless otherwise stated in the mark scheme, the mark scheme will show a mark to be awarded for the numerical value of the answer and a further mark for the correct unit. No penalties are imposed for incorrect or omitted units at intermediate stages in a calculation or at the final stage of a non-designated 'unit' question.
$7 \quad$ All other procedures including recording of marks and dealing with missing parts of answers will be clarified in the standardising procedures.

GCE Physics, Specification A, PHYA1, Particles, Quantum Phenomena and Electricity

| 1 | a | i | quark antiquark pair OR $\overline{q q}$ OR named quark antiquark <br> pair $\checkmark$ | 1 |
| :--- | :--- | :--- | :--- | :---: |
| 1 | a | ii | $0 \checkmark$ | 1 |
| 1 | a | iii | $\bar{u} s \checkmark$ |  |
| 1 | b | i | Weak $\checkmark$ any of the following also score 1 mark: <br> weak interaction <br> weak interaction force <br> weak nuclear <br> weak nuclear interaction <br> weak decay <br> weak force <br> weak nuclear force | 1 |
| 1 |  |  |  |  |


| 1 | b | ii | conserved: baryon number, charge, lepton number, spin <br> $\checkmark \checkmark$ <br> not conserved: strangeness $\checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :--- |


| 1 | b | iii | $K^{-} \rightarrow \pi^{0}+e^{-}+\overline{v_{(e)}} \checkmark \checkmark$ <br> OR $K^{-} \rightarrow \pi^{0}+\mu^{-}+\overline{v_{(\mu)}}$ | 2 |
| :--- | :--- | :--- | :--- | :---: |
| 2 | a | i | nucleon number is the number of protons and neutrons <br> OR mass number <br> proton number is the number of protons OR atomic <br> number $\checkmark$ | 1 |


| 2 | a | ii | $14-6=8 \checkmark$ | 1 |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  |  |  |  |  |  |
| 2 | a | iii | specific charge $=6 \times 1.6 \times 10^{-19} \checkmark /\left(14 \times 1.66 \times 10^{-27} \checkmark\right)$ <br> specific charge $=4.1 \times 10^{7}\left(\mathrm{C} \mathrm{kg}^{-1}\right) \checkmark$ | 3 |  |


| 2 | b | i | isotopes are variations of an element that have same <br> proton/atomic number $\checkmark$ <br> but different nucleon number OR different number of <br> neutrons $\checkmark$ | 2 |
| :--- | :--- | :--- | :--- | :---: |


| 2 | b | ii | $4.8 \times 10^{7}=6 \times 1.6 \times 10^{-19} \checkmark /\left(\mathrm{A} \times 1.66 \times 10^{-27}\right)$ <br> $A=6 \times 1.6 \times 10^{-19} /\left(4.8 \times 10^{7} \times 1.66 \times 10^{-27}\right)$ <br> $A=12 \checkmark$ <br> Number of neutrons $=12-6 \checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :--- |



| 3 | b |  | uud $\checkmark$ | 1 |
| :--- | :--- | :--- | :--- | :---: |
| 3 | c | i | an atomic/orbital/shell electron $\checkmark$ <br> interacts with a proton in the nucleus (via the weak <br> interaction) $\checkmark$ |  |
| 3  <br> neutron formed or u quark changes to d quark(and <br> neutrino released) $\checkmark$ 3 |  |  |  |  |


| 3 | C | ii |  | 3 |
| :---: | :---: | :---: | :---: | :---: |


| 4 | a | i | minimum energy required $\checkmark$ <br> to remove electron from metal (surface) OR cadmium OR <br> the material $\checkmark$ | 2 |
| :--- | :--- | :--- | :--- | :---: |


| 4 | a | ii | photons have energy dependent on frequency OR energy <br> of photons constant $\checkmark$ <br> one to one interaction between photon and electron $\checkmark$ <br> Max KE = photon energy - work function in words or <br> symbols $\checkmark$ <br> more energy required to remove deeper electrons $\checkmark$ | 4 |
| :--- | :--- | :--- | :--- | :---: |


| 4 | a | iii | $\left(\right.$ use of $\left.h f=\phi+E_{k(\max )}\right)$ <br> $6.63 \times 10^{-34} \times f=4.07 \times 1.60 \times 10^{-19} \checkmark+3.51 \times 10^{-20} \checkmark$ <br> $f=1.04 \times 10^{15}(\mathrm{~Hz})$ OR $1.03 \times 10^{15}(\mathrm{~Hz}) \checkmark \checkmark(3 \mathrm{sig}$ figs $)$ | 4 |
| :--- | :--- | :--- | :--- | :---: |


| 4 | b | theory makes predictions tested $\checkmark$ by repeatable/checked <br> by other scientists/peer reviewed (experiments) OR new <br> evidence that is repeatable/checked by other <br> scientists/peer reviewed $\checkmark$ | 2 |
| :--- | :--- | :--- | :--- | :--- |


| 5 | a | The candidate's writing should be legible and the <br> spelling, punctuation and grammar should be <br> sufficiently accurate for the meaning to be clear. <br> The candidate's answer will be assessed holistically. The <br> answer will be assigned to one of three levels according <br> to the following criteria. <br> High Level (Good to excellent): 5 or 6 marks <br> The information conveyed by the answer is clearly <br> organised, logical and coherent, using appropriate <br> specialist vocabulary correctly. The form and style of <br> writing is appropriate to answer the question. <br> The candidate states that the power supply is connected | max 6 |
| :--- | :--- | :--- | :--- | :--- |



| 5 | b | i | (use of $P=I V)$ <br> $\mathrm{I}=24 / 12=2.0(\mathrm{~A}) \checkmark$ | 1 |
| :--- | :--- | :--- | :--- | :--- |


| 5 | b | ii | peak current $=\sqrt{ } 2 \times 2.0=2.8(A) \checkmark$ | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 5 | b | iii | peak power $=\sqrt{ } 2 \times 12 \times \sqrt{ } 2 \times 2.0 \checkmark=48(W) \checkmark$ | 2 |
| 6 | a | i | $\begin{aligned} & \text { (use of } P=V I \text { ) } \\ & I=36 / 12+6 / 12 \quad=3.5(\mathrm{~A}) \end{aligned}$ | 2 |
| 6 | a | ii | $\begin{aligned} & \text { (use of } V=I R \text { ) } \\ & R=12 / 3=4(\Omega) \end{aligned}$ | 1 |
| 6 | a | iii | $R=12 / 0.50=24 \checkmark(\Omega)$ | 1 |
| 6 | b |  | terminal pd/voltage across lamp is now less OR current is less $\checkmark$ <br> due to lost volts across internal resistance OR due to higher resistance $\checkmark$ <br> lamps less bright | 3 |
| 6 | c | i | current through lamps is reduced as resistance is increased or pd across lamps is reduced as voltage is shared $\checkmark$ <br> hence power is less OR lamps dimmer $\checkmark$ | 2 |


| 6 | c | ii | lamp Q is brighter $\checkmark$ <br> lamp Q has the higher resistance hence pd/voltage <br> across is greater $\checkmark$ <br> current is the same for both $\checkmark$ <br> hence power of Q greater $\checkmark$ | $\max 3$ |
| :--- | :--- | :--- | :--- | :--- |


| 7 | a | i | (use of $V=I R)$ <br> $I=(12-8) / 60 \checkmark=0.067$ Or $0.066(\mathrm{~A}) \checkmark$ | 2 |
| :--- | :--- | :--- | :--- | :--- |


| 7 | a | ii | (use of $V=I R)$ <br> $R=8 / 0.067=120(\Omega) \checkmark$ | 1 |
| :--- | :--- | :--- | :--- | :---: |


| 7 | a | iii | (use of $Q=I t)$ <br> $Q=0.067 \times 120=8.0 \checkmark \mathrm{C} \checkmark$ | 2 |
| :--- | :--- | :--- | :--- | :--- |


| 7 | b | reading will increase $\checkmark$ <br> resistance (of thermistor) decreases (as temperature <br> increases) $\checkmark$ <br> current in circuit increase (so pd across $R_{1}$ increases) OR <br> correct potential divider argument $\checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :---: |

UMS conversion calculator www.aqa.org.uk/umsconversion

